Publications

Publications

Technology to watch in 2018

Powell, K.

In the field of cancer immunogenomics, researchers want to know which of the mutated proteins encoded by the cancer genome are capable of eliciting an immune response in a given individual. Such proteins, called neo-antigens, could be utilized to develop personalized cancer vaccines or indicate other treatments.

One exciting technology that could be used to study these neo-antigens is CyTOF, a so-called mass-cytometry method for identifying cells that express specific proteins.

In typical flow cytometry, researchers mix antibodies labelled with a fluorescent molecule with cells to tag proteins of interest. Then the cells are analysed, one by one, to measure their relative abundances on the basis of those proteins. CyTOF replaces the limited handful of fluorescent tags with metallic labels that are detected in a mass spectrometer — 100 or more different labels at once, compared with perhaps a dozen in the case of flow cytometry.

This technology could transform the field of cancer immunogenomics, by enabling researchers to work out which neo-antigens produced by an individual’s cancerous cells are the most abundant and most likely to elicit a strong reaction from the immune system. Researchers could then use that information to create personalized anti-cancer ‘vaccines’. These, used in combination with new cancer drugs that release the brakes on the immune system, could put people with cancer in a position to fight off their own disease.

But for any given neo-antigen predicted by the genome, it’s guesswork as to whether it will elicit a significant immune response. CyTOF gives us insight into that question, by letting us quantify the binding strengths of multiple predicted peptides to the person’s T cells.

And it’s not just for cancer genomics. CyTOF can be used to track the abundance and make-up of any suite of proteins produced by cells, as long as you can find antibodies to bind your proteins of interest. It’s allowing us to ask questions at the protein level in a much more multidimensional and precise way than before.

Citation

Powell, K. "Technology to watch in 2018" Nature (2018):